An efficient method for minimizing a convex separable logarithmic function subject to a convex inequality constraint or linear equality constraint

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient method for minimizing a convex separable logarithmic function subject to a convex inequality constraint or linear equality constraint

We consider the problem of minimizing a convex separable logarithmic function over a region defined by a convex inequality constraint or linear equality constraint, and twosided bounds on the variables (box constraints). Such problems are interesting from both theoretical and practical point of view because they arise in somemathematical programming problems as well as in various practical prob...

متن کامل

Minimization of a Convex Linear-Fractional Separable Function Subject to a Convex Inequality Constraint or Linear Inequality Constraint and Bounds on the Variables

We consider the problem of minimizing a convex linear-fractional separable function over a feasible region defined by a convex inequality constraint or linear inequality constraint, and bounds on the variables (box constraints). These problems are interesting from both theoretical and practical points of view because they arise in somemathematical programming problems and in various practical p...

متن کامل

Minimization of a strictly convex separable function subject to a convex inequality constraint or linear equality constraints and bounds on the variables

In this paper, we consider the problem of minimizing a strictly convex separable function over a feasible region defined by a convex inequality constraint and two-sided bounds on the variables (box constraints). Also, the convex separable program with a strictly convex objective function subject to linear equality constraints and bounded variables is considered. These problems are interesting f...

متن کامل

An Optimal Algorithm for Minimization of Quadratic Functions with Bounded Spectrum Subject to Separable Convex Inequality and Linear Equality Constraints

An, in a sense, optimal algorithm for minimization of quadratic functions subject to separable convex inequality and linear equality constraints is presented. Its unique feature is an error bound in terms of bounds on the spectrum of the Hessian of the cost function. If applied to a class of problems with the spectrum of the Hessians in a given positive interval, the algorithm can find approxim...

متن کامل

A dual neural network for convex quadratic programming subject to linear equality and inequality constraints

A recurrent neural network called the dual neural network is proposed in this Letter for solving the strictly convex quadratic programming problems. Compared to other recurrent neural networks, the proposed dual network with fewer neurons can solve quadratic programming problems subject to equality, inequality, and bound constraints. The dual neural network is shown to be globally exponentially...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Decision Sciences

سال: 2006

ISSN: 1173-9126,1532-7612

DOI: 10.1155/jamds/2006/89307